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Abstract
With the increasing demand for orthodontic treatment, the skill of wire bending is more and more important for orthodon-
tists. Traditional wire bending training needs a high cost of time and resources. In this paper, an augmented reality assisted 
wire-bending training system (ARAWTS) is proposed. ARAWTS provides 4 typical wire bending training tasks for the 
trainee and can give training feedback and improvement advice to the trainee by gesture recognition during the training. 
For the elaborate and vague wire bending gesture recognition, we develop a temporal logical relation (TLR) module to 
sparsely sample dense frames and learn the TLRs between frames of gestures. To reduce the computational cost and time, 
we introduce a new type of sparse optical flow called Focus Grid Optical Flow (FGOF). From the results of experiments, 
the proposed algorithm implemented on an AR device (HoloLens) achieves a high recognition rate with low computational 
complexity and ARAWTS is proved reliable.

Keywords Augmented reality · Wire bending · Gesture recognition · Temporal logical relation · Focus Grid Optical Flow · 
Orthodontic treatment

1 Introduction

An increasing number of patients are demanding orthodontic 
treatment for improved esthetics and a better mastication 
system. The orthodontic treatment needs the correct diag-
nosis, analysis, and rehabilitation design. Also, the medical 
skills of clinical operations are important and wire bending 
is a significant part (Lau et al. 2021; Sivarajan et al. 2021; 
Kono and Kikuchi 2020). In the training for orthodontists, 
wire bending training is indispensable. The traditional teach-
ing and training pattern for wire bending is that the skilled 
teacher demonstrates the main wire bending operations 
and the trainee imitates the gestures. Only by repeatedly 
inquiring about the key points and techniques of teachers’ 
operations and practice over and over again, the trainee can 

improve the wire bending skills. The wire bending training is 
a process of visual imitations and repeating practices under 
the important hints, which is different from the theoretical 
study of diagnosis and rehabilitation design. Thus, the wire 
bending training is time and resource cost.

Virtual reality (VR) technology is used for training since 
the 1990s. VR technology can reproduce physical objects 
of the real world in the virtual computer environment (Tang 
et al. 2021; Lee et al. 2021a). With sensor devices, people 
can achieve direct natural interaction with the virtual world. 
In the field of training, the effectiveness and practicability of 
VR technology have been proved in many researches (Zhou 
2021; Osti et al. 2021; Lee et al. 2021b). However, the vir-
tual 3D world created by VR technology is completely sepa-
rated from reality. People are seeking a new way to better 
combining the virtual and real world.

Based on VR technology, a new technology named aug-
mented reality (AR) is developed (Hughes et al. 2005; Rios 
et al. 2011; Vakaliuk and Pochtoviuk 2021). AR technol-
ogy merges augmented information or virtual objects into 
the real world and improves the perception of reality. By 
applying virtual information to reality, AR technology can 
superimpose virtual objects and scenarios onto the real sce-
nario to achieve a reality augmentation. Under this merged 
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environment, users can real-time interact with real and vir-
tual objects in a more natural way. Different from the tradi-
tional interaction mode in VR environment which is human-
dominating and machine assisting, AR technology can 
extend to a new interaction mode, that is human–machine 
integration (Kethman 2021; Ballesté and Torras 2013; 
Nyre-Yu 2019). Human–machine integration combines the 
subjective information from humans and the objective data 
from machine, constructs a new understanding method and 
gives optimization judgments by inter coordination between 
humans and machines. Human–machine integration converts 
the understanding between human and machine from one-
way to two-way.

AR technology not only possesses the advantages of VR 
techniques in the field of training, but also has more merits 
to training in perception. By applying AR technology in the 
wire bending training, the trainees will not be isolated from 
reality and can be more natural to interact with the real sce-
nario and virtual objects. Thus, authenticity, interactivity, 
and practicability are enhanced. AR assisted wire bending 
training is presently a leading-edge technology and a hot 
topic in the researches (Lo et al. 2021). The AR technology 
provides the repeating active goal practices which in the 
training process can effectively improve the skills of trainees 
and have a lower resource cost. In this way, the trainees can 
train their wire bending operations in the AR assisted envi-
ronment and apply the learned skills to real life.

Because the wire bending is conducted by hand opera-
tions, gestures of the bending operations are important to 
the wire bending training in the AR environment. According 
to the recognition of wire bending gestures, we can give the 
trainee evaluations and suggestions to improve their skills. 
Gesture recognition is a core problem in computer vision. 
Many researches focus on convolutional neural networks 
(CNNs) to recognize gestures by frames. Simonyan and 
Zisserman (2014) proposed a two-stream CNN to capture 
the complementary information on appearance from frames 
for gesture recognition. Although CNNs can achieve state-
of-the-art performance on many tasks of gesture recognition 
(Cheng et al. 2019), the high computational complexity and 
expensive training cost on dense frames made CNNs not 
meet the demands of real-time applications. Therefore, more 
and more works tend to design effective CNNs for gesture 
recognition (Wu et al. 2018). For example, Karpathy et al. 
(2014) fused the RGB frames on the temporal dimension 
and was evaluated on the Sport1M dataset. Tran et al. (2015) 
extracted the frame features by 3D convolution kernels on 
dense RGB input frames. Wang et al. (2016) proposed a 
Temporal Segment Network to sample frames and extract 
characteristics on different time segments for gesture recog-
nition. Carreira and Zisserman (2017) studied an I3D net-
work which used two steam CNNs to combine the RGB data 
and optical flows of the Kinetics dataset. These methods are 

mostly validated on many video datasets, such as Sport1M 
(Karpathy et  al. 2014), Kinetics (Kay et  al. 2017) and 
UCF101 (Soomro et al. 2012). These datasets include the 
gestures without the long-term temporal logical relation 
which can be identified enough by the frames of the labeled 
gestures. Thus, CNNs can perform well on these datasets 
for gesture recognition. However, CNNs are still struggling 
to deal with gestures which contain long-term temporal 
logical relations rather than the appearance of objects. Wire 
bending gestures are elaborate and vague which are hard to 
divide into several single gestures for recognition. Also, wire 
bending gestures contain strong temporal logical relations 
between frames. Because of the inherent ambiguity in the 
temporal extent, it is challenging for CNNs to accurately 
recognize the wire bending gestures (Wu 2020).

To address these issues, this paper designs an augmented 
reality assisted wire-bending training system (ARAWTS) 
which provides a natural environment of wire bending train-
ing for trainees. We define 20 key points on the hand and 
simultaneously extract the optical flows and positions of 
key points as the dynamic and static features of gestures. 
To reduce the computational cost and time, we introduce 
a modified sparse optical flow called Focus Grid Optical 
Flow (FGOF). We also develop a temporal logical relation 
(TLR) module for elaborate and vague gesture recognition. 
TLR module sparsely samples dense frames and learns the 
temporal logical relations between frames of gestures. In 
ARAWTS, the trainee can receive real-time training advice 
and evaluations to improve their wire bending skills.

This paper is organized in the following way. In the Sec-
ond Chapter, ARAWTS for orthodontics and the defini-
tion of wire bending gestures are shown. The algorithm of 
gesture recognition in ARAWTS is introduced in the Third 
Chapter. The Fourth Chapter explains the human–machine 
integration in ARAWTS. The experiment results of gesture 
recognition and wire bending training are presented in the 
Fifth Chapter. Finally, the conclusion is provided.

2  Augmented reality assisted 
wire‑bending training system (ARAWTS) 
for orthodontics

In this chapter, we will introduce the overall framework of 
ARAWTS and the definitions of wire bending gestures in 
ARAWTS.

2.1  Overall framework

ARAWTS is built on the AR device HoloLens (Hilliges et al. 
2017) and can give real-time training advice and evaluations 
according to the trainee’s operation videos. The framework 
of ARAWTS is shown in Fig. 1. The trainee carries on the 
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wire bending training in an AR training program. In the 
training program, there are multiple typical wire bending 
training tasks. The trainee can choose any training task at 
will. During the wire bending training, the relevant data are 
recorded. According to real-time gesture recognition, the 
system can give training advice for each step of the trainee’s 
operations. At the end of the training task, a total evaluation 
is given and the system can tell the trainee which step maybe 
exist the problems and where needs to be improved.

2.2  Definitions of wire bending gestures

The tasks of ARAWTS are mainly conducted by hand opera-
tions. By the recognition of gestures, ARAWTS can analyze 
the standard and achievement of the hand operations and 
evaluate the performance of the training.

In this paper, we design four typical wire bending training 
tasks: Closing loop, Omega loop, T loop, and Vertical loop 
(Waters et al. 1975), which are illustrated in Fig. 2.

The training tasks are recorded to videos by cameras on 
an AR device. Let T be a given task of wire bending train-
ing and V be the recorded video corresponding to T. V can 
be expressed as a series of frames in a digital image, that is,

where ft is the tth frame.
To conduct the training task, the trainee needs to hold 

the wire with one hand and move the orthodontic plier to 
the appropriate position and rotate with both two hands. 
During the training operations, there are mainly two ges-
tures, that is moving and rotating. According to the differ-
ent distances of moving and degrees of rotating, various 
loops can be bent. However, the gestures in the wire bend-
ing operations are elaborate and vague which are hard to 
recognize by the common CNN methods. According to 

(1)V =
{
ft, t = 1, 2,…

}

the strong temporal logical relations between frames, this 
paper proposes a gesture recognition algorithm below for 
elaborate and vague gesture operations like orthodontics 
wire bending which is detailed in chapter 3.

3  Gesture recognition in augmented reality 
assisted wire‑bending training system 
(ARAWTS)

In this chapter, the algorithms for gesture recognition in 
ARAWTS are introduced. A modified sparse optical flow 
called Focus Grid Optical Flow (FGOF) is proposed to 
reduce the computational cost and provide a smooth inter-
action in ARAWTS. Also, we develop a temporal logical 
relation (TLR) module for elaborate and vague gesture 
recognition which can obtain the temporal logical relations 
between each frame.

This chapter mainly involves the following parts: fea-
ture extraction, temporal logical relation (TLR) module 
and gesture recognition. The specific processing steps are 
as follows.

3.1  Feature extraction

For the tth frame ft from the input video V of wire bending 
training tasks, we first use the bounding box (Mehta et al. 
2017) to crop the target hand. Then, static and dynamic 
features are simultaneously extracted from cropped frames.

Fig. 1  The framework of ARAWTS

Fig. 2  Four types of wire bending training: a closing loop, b Omega 
loop, c T loop, and d vertical loop
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3.1.1  Static feature

We define 20 key points of the hand which are illustrated in 
Fig. 3. The two-dimensional key point positions of hands from 
the input cropped image denoted by Pt are extracted as the 
static features. Pt in frame ft can be presented by

where pm
t
(x, y) is the two-dimensional position of the mth 

key point.

3.1.2  Dynamic feature

The optical flow from each key point is calculated as the 
dynamic feature for gesture recognition. However, the typi-
cal optical flow is dense and it will increase the compu-
tational complexity during gesture recognition. Also, the 
typical dense optical flow of the useless pixels may bring 
negative effects to the final recognition results. To reduce 
the negative effects of the dense optical flow, we propose 
a modified sparse optical flow named Focus Grid Optical 
Flow (FGOF).

First, some grids are built on the input image. d is denoted 
as the grid distance, H and W are the height and width of 
the input image. The number of grid points denoted by Nlp 
can be expressed as

(2)
Pt =

(
p1
t
(x, y), p2

t
(x, y),… , pm

t
(x, y),… , p20

t
(x, y)

)

m = 1, 2,… , 20

(3)Nlp = H∕d ×W∕d

Then, we don’t calculate all the optical flow but only 
focus on key points. According to static features, that is the 
two-dimensional positions of key points, we obtain the opti-
cal flow vectors of the grid points which are in the circle 
area with a radius D around each key point. GOF(x, y) is 
defined as the optical flow vector of the grid point in each 
corresponding key point area and calculated by the Lucas-
Kanade algorithm (Lucas and Kanade 1981).

Last, the average optical flow of these grid points denoted 
by AFm represents the movement of each key points, as 
shown in Fig. 4. The average optical flow AFm is defined 
as follows:

where GOFm
k
(x, y) and nm stand for the optical flow vector 

and the number of the kth grid point for the mth key point, 
respectively, and Dm is the area radius of the mth key point. 
The setting for parameters d and Dm needs to be a good 
trade-off. A larger d may lead to low accuracy but a smaller 
d may result in heavier computations. Also, a larger Dm 
may increase the computational cost and a small Dm may 
reduce the recognition rate. Because only the optical flow 
of gird points needs to be calculated, the computation cost 
is reduced by at least d2 times compared with typical dense 
optical flow. Also, due to the reason that the region of optical 
flow vectors is restricted, the influence of useless informa-
tion can be reduced and the precision will increase.

Therefore, the optical flow in frame ft can be presented by

(4)AF
m(x, y) =

�∑
GOF

m
k
(x,y)

nm
�Dm

�

(5)

AFt =
(
AF

1

t
(x, y), AF2

t
(x, y),… , AF

m
t
(x, y),… , AF

20

t
(x, y)

)

m = 1, 2,… , 20

Fig. 3  20 key points of a hand

Fig. 4  The illustration of Focus Grid Optical Flow
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3.1.3  Feature matrix

In summary, the final feature matrix Ft of frame ft can be 
concluded as

3.2  Temporal logical relation (TLR) module

Some elaborate and vague gestures, such as wire bending 
gestures, are hard to divide into several single gestures for 
recognition. Thus, in this part, we propose a temporal logical 
relation (TLR) module which can learn the strong tempo-
ral logical relations between frames of elaborate and vague 
gestures.

For a given input video V, we uniformly sample n frames 
and build a new TLR video set in a chronological order 
which is denoted by V ′ , that is

F
′

i
 and F′

j
 are the feature matrices of f ′

i
 and f ′

j
 which are the 

ith frame and the jth frame of V ′ , respectively, 
i, j ∈ {1, 2,… , n} . We define the temporal logical relations 
between two frames as below:

(6)Ft =

[
Pt

AFt

]

(7)V � =
{
f
�

1
, f

�

2
,… , f

�

n

}

(8)
TLR2

(
V �
)
= A𝛼

(
∑

i<j

B𝛽

(
F

�

i
,F

�

j

))

i, j ∈ {1, 2,… , n}

where A� and B� are the feature fusion functions and we 
use multilayer perceptrons (MLP) with parameters � and 
� , respectively, as the feature fusion functions. For efficient 
computation, we don’t add all the combination pairs but uni-
formly sample pairs and sort them.

The two-frame temporal logical relations can be further 
extended to a higher level, for example, the three-frame tem-
poral logical relations can be expressed by

The same as the two-frame TLR, we sample and sort the 
three-frame combinations for the computation rather than 
adding all the combinations.

To obtain the multiple time-scale temporal logical rela-
tions, we extend the TLR to N frames and define the multiple 
time-scale TLR as follows:

where each TLR� represents the temporal logical relation 
between � sorted frames and each TLR� has separate feature 
fusion functions A�

� and B�

�
 . The illustration of MLP module 

is shown in Fig. 5.

3.3  Gesture recognition

The multiple time-scale temporal logical relations cap-
tured by the TLR module then are inputted into the gesture 

(9)
TLR3

(
V �
)
= A

�

𝛼

(
∑

i<j<l

B
�

𝛽

(
F

�

i
,F

�

j
,F

�

l

))

i, j, l ∈ {1, 2,… , n}

(10)
MTLRN

(
V �
)
= TLR2

(
V �
)
+ TLR3

(
V �
)
+⋯ + TLRN

(
V �
)

Fig. 5  The illustration of multi-
ple time-scale TLR
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recognition network. We choose the directional pulse cou-
pled neuron network (Dong et al. 2019) as the gesture recog-
nition network because DPCNN can classify and recognize 
dynamic gestures by template matching and is often applied 
to real-time applications.

For the sake of smooth interaction, it is essential to early 
recognize gestures of trainees. Through precise gesture pre-
diction, the system can give reasonable training advice to 
trainees. Because obtaining full temporal logical relation 
features of hand movement is the most important part of 
gesture prediction, we use the static key point positions, 
dynamic FGOF information and multiple time-scale TLRs 
to do a regression on LSTMs (Zhu et al. 2017) and predict 
gestures in real time.

4  Human–machine integration system

During the wire bending, the trainee cannot complete wire 
bending operations in each step at once time. Because the 
materials of wire have different elastic coefficients, the wire 
may have a rebound during the bending operations. Even the 
gesture is correct and standard, the wire may not achieve the 
ideal shape. Thus, the trainee needs to continuously adjust 
to make the wire reach an ideal shape.

For this reason, only gesture recognition is not enough in 
ARAWTS. After the gesture recognition, we need to recog-
nize the deformation of the wire as the assist in the system. 

After the evaluation of the trainee’s gestures, the system 
will compare the practical wire shape with the sample tem-
plate shape, and then, give feedback on improvement to the 
trainee. The trainee receives the feedback and can do the 
adjustment intentionally to achieve a standard loop shape. 
Then, such mutual feedback procedure is repeated until the 
whole training is completed. The flow of ARAWTS is illus-
trated in Fig. 6. ARAWTS is not a single machine system, it 
needs the trainee to take part in the whole training process. 
Through continuous feedback from humans and machines, 
the trainee can improve to the ideal state. Thus, ARAWTS 
forms a human–machine integration system.

5  Experiments

The experiments are designed into two parts. The first part 
is the gesture recognition experiments. We compared with 
several methods on three public datasets to evaluate the 
accuracy and efficiency of the proposed gesture recognition 
algorithm with the TLR module and FGOF. The second part 
is the wire bending training experiments to validate the reli-
ability of the ARAWTS.

5.1  Gesture recognition

To evaluate the effectiveness of the proposed gesture rec-
ognition method, we conduct experiments on three public 
datasets: Cambridge Hand Gesture dataset (Kim et al. 2007), 
UCF sport dataset (Rodriguez et al. 2008) and MSR Daily 
Activity 3D dataset (Wang et al. 2012).

Cambridge Hand Gesture dataset is a commonly used 
benchmark for gesture recognition which consists of 900 
image sequences of 9 gesture classes defined by 3 primitive 
hand shapes and 3 primitive motions. For each gesture class, 
there are 2 subjects’ 10 arbitrary motions sequences under 5 
different illuminations which are illustrated in Fig. 7.

UCF sport dataset consists of a set of actions collected 
from various sports which are typically featured on broadcast 
television channels such as the BBC and ESPN. The dataset 
contains 10 different sports and a total of 150 sequences. 
The sports are Diving, Golf Swing, Kicking, Lifting, Riding Fig. 6  Flowchart of augmented reality assisted wire-bending training 

system (ARAWTS)

Fig. 7  Image frames from Cambridge Hand Gesture Dataset
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Horse, Running, Skate-Boarding, Swing-Bench, Swing-Side 
and Walking shown in Fig. 8.

MSR Daily Activity 3D dataset consists of 16 activity 
types which are drinking, eating, reading, calling, writing, 
using laptop, using vacuum cleaner, cheering up, siting still, 
tossing paper, playing game, laying downing, walking, play-
ing guitar, standing up, sitting down. There are 320 activity 
sequences in total and part of activities are shown in Fig. 9.

To validate the efficiency of the TLR module, we com-
pared the accuracy between “with TLR module” and “with-
out TLR module” on three datasets. Also, we record the 
computation time and accuracy between “with FGOF” and 

“without FGOG” to prove the availability of FGOF. The 
results are shown in Tables 1 and 2.

In Table 1, the accuracy between “with TLR” and “with-
out TLR” has only a difference of 4.5% in Cambridge Hand 
Gesture dataset but more than 25% in UCF sport dataset and 
MSR Daily Activity 3D dataset. This is due to the reason 
that gesture data between each class in Cambridge Hand 
Gesture dataset are with great differentiation and can be 
recognized from several isolated frames, but in UCF sport 

Fig. 8  Image frames from UCF 
sport Dataset

Fig. 9  Image frames from MSR 
Daily Activity 3D Dataset

Table 1  The accuracy of with TLR and without TLR on three data-
sets

Hand Gesture 
(%)

UCF sport (%) Daily 
Activity 
3D (%)

Without TLR 90.7 83.5 84.1
With TLR 98.2 92.4 96.9

Table 2  The comparison between dense optical flow and FGOF on 
datasets

Hand Gesture UCF sport Daily Activity 3D

Dense OF
 Computation time 188 ms 402 ms 386 ms
 Accuracy 91.6% 80.7% 89.1%

FGOF
 Computation time 49 ms 77 ms 68 ms
 Accuracy 98.2% 92.4% 96.9%
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dataset and MSR Daily Activity 3D dataset are with small 
differentiation and strong temporal logical relation which 
can’t be easily recognized only from isolated frames. Thus, 
the recognition rate without the TLR module is low on such 
strong temporal logical relation datasets. From Table 2, we 
can easily find that the computation time is reduced by more 
than 70% and the accuracy improves by at least 6.6% and 
even 11.7% on UCF sport dataset. Because only the optical 
flow of gird points needs to be calculated in FGOF, the com-
putation cost is greatly reduced compared with typical dense 
optical flow. Also, FGOF restricts the calculation region of 
optical flow vectors, and the influence of useless informa-
tion is reduced. The results from Tables 1 and 2 confirm the 
reliability of the TLR module and FGOF.

We also compared gesture recognition algorithm with 
other methods: PLSA (Wong et al. 2007), STCD (Sanin 
et al. 2013), DT + HS (Baraldi et al. 2014) and IT (Zhao 
and Elgammal 2008). The results are shown in Table 3. The 
results indicate that our algorithm achieves the best accuracy 
and outperforms all the compared methods on three datasets.

5.2  Wire bending training experiments

ARAWTS is built on Mixed Reality platform Microsoft 
HoloLens  (1st Generation). Task videos of ARAWTS are 
captured by cameras on HoloLens. The resolution of the 
cameras is 1268 × 720 with 30 frames per second (fps). We 
invite 20 people to take part in wire bending training experi-
ments. 20 people are divided into two groups: participants 
of one group are all orthodontists who have experience with 
wire bending; participants of the other group are all without 

experience in wire bending. Each person performs 4 types 
of training and each training is conducted 5 times which 
creates 400 videos in total. The demonstration scenario is 
shown in Fig. 10.

In ARAWTS, each training is divided into several steps. 
The system gives instructions at the beginning of each 
step, and evaluations at the end of each step according to 
the trainee’s gestures. At the end of the whole training, the 
system will give an overall evaluation of the training and 
tell the trainee which step may be nonstandard. ARAWTS 
can remember the data of each type’s last training, and in 
the next time of the same type’s training, the nonstandard 
step will be further divided into several steps to refine the 
gestures of the trainee.

To evaluate the performance of wire bending training, we 
give an achievement evaluating indicators denoted by Acℎ 
which is defined as:

where Error is the error between final loop and standard 
loop, HResult and WResult are the height and weight of the 
final loop, and HStd and WStd are the height and weight of the 
standard loop, respectively.

We compared the proposed algorithm with the tradi-
tional method (Zhao and Elgammal 2008) which is without 
TLR module and FGOG. Each group’s average achieve-
ment for each time is given in Table 4. We can see that 
the evaluations of the proposed algorithm are all showing 
an upward trend for both two groups, which prove that 
ARAWTS can improve the wire bending skill of trainees. 
For trainees in the no experience group, the evaluation 
increases from 30.6% at the first time to 80.1% at the fifth 
time which is nearly two times of improvement. Since 
the initial evaluation of the orthodontist group is high, 
though the evaluations of the orthodontist group only rise 
by 4.2%, the results are still convincing in improving the 
wire bending skill. However, the results of the traditional 
methods are far from satisfactory. The average accuracy 
of the no experience group is only 10.4%. Although the 
orthodontist group obtains the average accuracy of 70.4% 

(11)Error =
1

2

(|HResult−HStd|
HStd

+
|WResult−WStd|

WStd

)
× 100%

(12)Ach = 1 − Error

Table 3  The recognition accuracy on three datasets

Method Hand Gesture 
(%)

UCF sport (%) Daily 
Activity 3D 
(%)

PLSA 91.5 82.5 84.6
STCD 93.6 88.3 92.1
DT + HS 94.3 90.5 94.6
IT 96.2 90.8 96.3
Proposed 98.2 92.4 96.9

Fig. 10  Experimental scenario of ARAWTS
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because of the previous professional skills, the whole 
results are far lower than that of the proposed algorithm. 
The results of the traditional method don’t show an upward 
trend but also have a decrease at some times. This is 
because the traditional method without the TLR module 
has the great recognition errors to elaborate and vague 
gestures, and the recognition results mislead the trainee’s 
wire bending operations. The results in Table 4 also prove 
the importance of TLR module to elaborate and vague 
gesture recognition.

6  Conclusion

In this paper, we proposed a human–machine integration-
based augmented reality assisted wire-bending training 
system (ARAWTS). In ARAWTS, the trainee can choose 
the 4 typical wire bending training tasks. The system 
can give feedback and improvement advice to the trainee 
through gesture recognition and prediction during the 
training. We develop a temporal logical relation (TLR) to 
learn the temporal causal relations efficiently for the elabo-
rate wire bending gesture recognition. We also introduce 
the action unit and develop a new type of sparse optical 
flow called Focus Grid Optical Flow (FGOF) to reduce the 
computational cost and time. From the results of experi-
ments compared with the other algorithms, the proposed 
algorithm implemented on an AR device (HoloLens) 
achieves a high recognition rate with a low computational 
complexity which improves the efficiency and feasibility 
of the proposed algorithm and ARAWTS.
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